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ABSTRACT
Feedback during programming is desirable, but its usefulness de-
pends on immediacy and relevance to the task. Unit and regression
testing are practices to ensure programmers can obtain feedback
on their changes; however, running a large test suite is rarely fast,
and only a few results are relevant.

Identifying tests relevant to a change can help programmers in
two ways: upcoming issues can be detected earlier during program-
ming, and relevant tests can serve as examples to help programmers
understand the code they are editing.

In this work, we describe an approach to evaluate how well large
language models (LLMs) and embedding models can judge the
relevance of a test to a change. We construct a dataset by applying
faulty variations of real-world code changes andmeasuringwhether
the model could nominate the failing tests beforehand.

We found that, while embedding models perform best on such
a task, even simple information retrieval models are surprisingly
competitive. In contrast, pre-trained LLMs are of limited use as they
focus on confounding aspects like coding styles.

We argue that the high computational cost of AI models is not
always justified, and tool developers should also consider non-AI
models for code-related retrieval and recommendation tasks. Lastly,
we generalize from unit tests to live examples and outline how our
approach can benefit live programming environments.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software version control; • Computing methodologies →
Natural language processing.

KEYWORDS
generative ai, large language models, embedding models, testing,
test prioritization
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1 INTRODUCTION
Immediate feedback during programming activities helps program-
mers catch errors earlier and allows them to quickly validate and
iterate on the behavior they have in mind while editing.

Automated testing is a practice that allows programmers to
obtain such feedback by exercising the system under test with
exemplary data. However, running a large test suite introduces
delays in feedback, and critical tests that identify an issue may be
hidden in the test suite.

In this study, we address the problem of ranking tests by their
relevance to a program change, also known as Regression Test
Prioritization (RTP). Apart from choosing the best tests to run for
detecting defects earlier, presenting the most relevant test to a
programmer can provide valuable context and examples of how the
code under change is being used.

With the recent emergence of large language models (LLMs),
increased focus has been on their capability to generate code. How-
ever, we will assess their capability to judge already existing code
in the form of test cases.

While LLMs offer significant potential, they also have high com-
putational costs. Using them as a service can make them more
accessible but incurs a privacy risk – especially when working on
closed-source programs, and local deployment typically requires
specialized hardware, such as high-video-memory GPUs. Hence, we
will measure and compare the performance of more conservative
approaches in the RTP setting.

Our study compares a state-of-the-art code LLM, a code em-
bedding model, and a widely used information retrieval algorithm
on an RTP task on three open-source Python projects. We find
that using the transformer-based embedding model results in the
most effective prioritization, while the information retrieval model
achieves competitive performance for its low complexity. We also
find that the LLM performs poorly and subsequently investigate
possible causes.
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In this study, we focus on unit tests, yet our framework and find-
ings can be generalized to other instances that provide example data
or validation mechanics for a program, including documentation,
AI-generated code, or Babylonian examples in live programming
environments. In a future where an increasing amount of code is
AI-generated, tools that make growing code bases more accessible
are particularly valuable.

2 BACKGROUND
This section will review large language models (LLMs) and embed-
ding models on a high level. We will then discuss current regression
test prioritization (RTP) approaches and explain the Okapi BM25
information retrieval algorithm used as our non-AI baseline.

2.1 Language Models
A language model is a stateless function that, given a sequence
[𝑡1, . . . , 𝑡𝑛] of tokens, computes probabilities 𝑃 (𝑡𝑛+1 | [𝑡1, . . . , 𝑡𝑛]) for
the next token following that sequence. Tokens are independent of
the language’s grammar and represent the most common substrings
from the training data.

Generative LLMs. This stateless function alone does not lend
itself to generating code. It starts with an initial sequence (prompt)
and repeatedly selects and appends one of the most probable sub-
sequent tokens for the next iteration. Based on this, a theoretically
infinite sequence (completion) can be generated until the process
is stopped by special tokens (e.g., a line break or a special end-of-
sequence "EOS" token) or a defined maximum size. In this work,
we do not generate new code but use the underlying probabilities
to calculate how likely it is that a given test would be generated
based on a change.

State-of-the-art code-generating models such as CodeLlama [13]
and StableCode [11] are based on the transformer architecture.

Embeddings. An embedding aims to produce vectors for (textual)
data so that the proximity of two vectors measures the semantic
similarity of their associated data.

While transformer-based LLMs focus on the next token, they
capture semantic information in the vectors associated with each
token by incorporating other tokens as context. The same archi-
tecture can be trained to predict the current tokens (e.g., giving a
masked input to be reconstructed) so that these vectors become
a robust "lossy compression" of the input string. By pooling the
vectors for each token, a single vector can be produced that we refer
to as embedding of the input. Examples of such models specialized
in source code are CodeBert [3] and UniXCoder [4]. They typically
have a smaller footprint than generative LLMs.

2.2 Regression Test Prioritization
Research on test relevance has been concerned with two major
problems: Regression Test Prioritization (RTP), in which the objec-
tive is to rank all tests, and Regression Test Selection (RTS), where
the best subset of tests is to be found within certain constraints
(e.g., given number of tests or maximum execution time).

For the remainder of this paper, we will focus on RTP. RTP
approaches can be subdivided depending on the input data used
to rank tests. While many approaches take the whole program as

input and aim to uncover defects anywhere as quickly as possible,
we are only interested in a (small) change and a ranking that helps
programmers assess their change as quickly as possible.

Evaluating RTP. An RTP approach should ideally be evaluated
using realistic change and testing histories. Representative data
is typically scarce as "broken" code changes are rarely published,
and recent approaches to collect such a dataset are limited (e.g.,
RTPTorrent [8] only includes Java projects).

Mutation testing, i.e., systematically injecting defects into the
program and running the test suite, is a way to obtain synthetic test
logs quickly but has several disadvantages: The synthetic changes
are not representative of real-world programming activity, and the
test suite has evolved in response to natural defects and feedback
requirements and might not provide sufficient granularity or cov-
erage to distinguish or detect synthetic faults. In subsection 3.1,
we describe an approach that combines the scalability of mutation
testing while retaining realistic changes.

Currently effective strategies. Current approaches to RTP often
use historical data or natural language features. Applying the demon-
strated fault effectiveness [5] strategy that ranks tests by their most
recent failure rates to a real-world dataset [8] revealed that nat-
urally occurring test failures follow predictable patterns, i.e., the
most recently failed test is the most likely to fail again.

In the absence of historical data, the REPiR system [14] demon-
strated that a widely used information retrieval technique (Okapi
BM25, described below) is highly effective at predicting test failures
even without dynamic or static program information apart from
the changed source code alone. This is more effective than using
statically determined test coverage [9].

Mutation testing has been used to train models for RTP tasks.
For example, precision-based ranking [7] uses shared vocabulary be-
tweenmutants and test failures to determinewhich identifiers in the
code are predictive of test failureswhen they change.Meier et al. [10]
developed a real-time heuristic that pre-trains decision trees on
mutation testing data to perform continuous live prioritizationwhile
navigating and changing code.

2.3 Information Retrieval in RTP
Information-retrieval-based RTP approaches like REPiR use the
Okapi BM25 model. BM25 computes the similarity of a query (a
change) to a set of documents (the tests) by splitting both into
individual terms (normalized words) and comparing term frequen-
cies ("TF"). The relevance of each term is weighted inversely pro-
portional to the percentage of documents it appears in (inverted
document frequency, "IDF") to boost the weight of specific over
common terms. As such, it is an instance of a TF-IDF model.

The similarity of a test 𝑇 to the change 𝐶 is computed by repre-
senting both as vocabulary-sized vectors for 𝑛 different terms in
the vocabulary (tf (𝑡1) idf (𝑡1), . . . , tf (𝑡𝑛) idf (𝑡𝑛)) and taking their
dot product. We only sum over terms 𝑡 appearing in the change
since the other vector components are 0:

𝑃𝑟𝑖𝑜 (𝐶,𝑇 ) =
∑︁
𝑡 ∈𝐶

tf𝐶 (𝑡) tf𝑇 (𝑡) (idf (𝑡))2 (1)
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Figure 1: Change-based mutation testing: A defect is intro-
duced into a real change between two versions. If the defect
manifests during test runs, the additional test failures serve
as ground truth for evaluating RTP approaches with the orig-
inal change as input.

According to Okapi BM25 and its use in REPiR [14], the following
definitions for tf and idf are used:

tf𝑇 (𝑡) =
𝑘1𝑛𝑡

𝑛𝑡 + 𝑘1 (1 − 𝑏 + 𝑏 (𝑁𝑇 /�̂� ))
(2)

tf𝐶 (𝑡) =
𝑘2𝑛𝑡

𝑛𝑡 + 𝑘2
(3)

idf (𝑡) = 𝑙𝑜𝑔
𝐷 + 1
𝑑𝑡 + 1

(4)

Here, 𝑛𝑡 is the number of times term 𝑡 appears in the respective
test or change, 𝑁𝑇 is the size (total number of terms) of the test,
�̂� the average size of a test, 𝐷 the number of tests ("documents")
and 𝑑𝑡 the number of tests in which 𝑡 appears at least once. We
have free parameters 𝑘1 and 𝑘2 that influence how slowly a term
"saturates" in tests and changes, and 𝑏 determines howmuch length
penalizes term frequencies. REPiR uses the values 𝑘1 = 1, 𝑘2 = 1000,
and 𝑏 = 0.3, but we found setting 𝑘1 = 𝑘2 = 10 yields better results
since related work might have used much larger changes, and thus
a larger 𝑘2.

3 APPROACH
Our study aims to determine how well LLMs and embeddings pri-
oritize tests of a test suite given a change.

Before comparing different prioritization strategies, we need
ground truth data that establishes which tests are relevant to a
given change by observing them fail when that change introduces
a defect. This section describes our approach to change-based mu-
tation testing and two different methods to rank tests using AI
models.

3.1 Change-based Mutation Testing
Change-based mutation testing is a technique that generates syn-
thetic test logs by breaking real changes. It requires a fine-grained
version history of the code and, for each version except the first,

applies defective patches from a previous version before running
its current tests as illustrated in Figure 1.

While the defects introduced into the program do not represent
human errors, their distribution follows actual programming ac-
tivity (e.g., no defects in never-edited code). Since we later use the
whole real-world change (not just the mutation) as input to the
RTP algorithm, we can emulate a realistic scenario where the fault
location is not precisely known, only that it had to be introduced
by the most recent change. The failing tests strongly suggest they
would have been "relevant" to the change.

In the following, we will explain our implementation of change-
based mutation testing in Python. It is an updated variation based
on a previous implementation [7].

Change selection. For a program under test, we considered all
Git commits in reverse chronological order. We compute the diff to
their parent and skip changes that do not modify code (.py files)
or change more than 50 lines of code at once. Large changes rarely
reflect scenarios in which fast feedback is helpful or attainable.

Since changes can go back several years, we parse project meta-
data (requiremens.txt, tox.ini or pyproject.toml) and install
the required version of the dependencies at the time of the commit
through the package manager (pip).

Control run. We run all tests once before "breaking" the change
and collect the results. If the control run fails entirely, we omit
this change – this is mostly the case when the commit includes
wrong dependencies or is old enough to use deprecated language
features.We terminate change collection for a project once any com-
mit (sorted descendingly by timestamp) starts to use a deprecated
language feature.

Mutation runs. We use four mutation operators on the changes.
They are inspired by Stryker1 and have been empirically selected
to apply relatively uniformly across Python code:

Binary This operator identifies binary operators in source code
and replaces them with their counterparts (e.g., "+" with "-"
or "|" with "&"). We exclude the modulo operator (%) for its
extensive use in string formatting.

Strings This operator identifies strings introduced or changed
and replaces them with the empty string.

Numbers This operator identifies numbers introduced or
changed and replaces them with 42.

Conditions This operator identifies comparisons in a condi-
tional role (e.g., as if condition) and yields two candidates
per location, replacing them with True and False succes-
sively.

Each mutation operator identifies a set of mutation sites within the
diff to the previous commit. We skip arithmetic mutations inside
(algebraic) type annotations as they cause import-time crashes
before any tests can be run and conditions inside while-loops as
they likely cause infinite loops, delaying the testing process.

For each mutation site, we check out the commit into a separate
working directory, apply one mutation, and run all tests except
those that did not already succeed in the control run. Not all test
runs finish since some mutations crash the test runner.

1https://stryker-mutator.io/ (last accessed 2024-02-29)

https://stryker-mutator.io/
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Figure 2: Computing the relevance of a test to a change by
accumulating the probabilities output by an LLM as if it was
generating the test.

At the end of the process, we have one control run and several
mutation test runs per commit, associating at least one "defective"
test run with each change.

3.2 LLM-based Test Prioritization
Our LLM-based approach uses the capability of a code-generating
LLM to generate tests. However, instead of sampling a new test
from the model, we use the probability that the LLM would have
generated a given test as the test’s priority. The process is illustrated
in Figure 2.

More precisely, we use the change as a prompt, and rather than
sampling the next token for a test, we look at the probability of the
actual token in the test and then proceed to the next token as if
the previous one had been generated. The transformer architecture
of modern LLMs can compute the probabilities for all tokens in
parallel. Since the test probability (product of token probabilities)
would make longer tests less probable, we compute their geometric
mean to account for varying lengths.

Formally, we compute the average probability 𝑃 for a test 𝑇
(consisting of tokens 𝑡1 . . . 𝑡𝑛) given a change 𝐶 as:

𝑃 (𝑇 |𝐶) = 𝑛
√︁
𝐿𝐿𝑀 (𝑡1 |𝐶) . . . 𝐿𝐿𝑀 (𝑡𝑛 |𝐶, 𝑡1, . . . , 𝑡𝑛−1) (5)

Change formatting. A relevant variation point is how we format
the change as an LLM prompt. This process is also known as prompt
engineering. Including only the changed lines omits relevant con-
text and might be syntactically incorrect (e.g., if the prompt leaves
an open bracket after a function call, the LLM might compute the
probability that a test appears as a function parameter, which is
generally very low and not a useful metric).

We parse all files involved in the change to build a syntactically
correct context. For each contiguous chunk of a (possibly scattered)
change, we compute the smallest set of complete statements cov-
ering the chunk. Then, we follow the lexical scope upwards and

prepend all scope definitions (such as functions, classes, and eventu-
ally the file name as a comment). The code replaced in this change
is commented out.

Listing 1 illustrates the context built around a single-line change
replacing a function parameter. First, the full statement (function
call) is identified, followed by the surrounding condition, method
definition, and class definition. A prompt is appended instructing
the LLM to continue with a test.

Listing 1: LLM prompt with lexical context around a single-
line change replacing the second parameter in a call format-
ted over multiple lines. The red passage marks the removed
line, the green line the inserted code.
# file: package/module/submodule.py

class AClass:

def method(self , args):

if condition:

call(

param1=value1 ,

# changed:

# param2=value2

param2=new_value2

)

# A test validating this change:

Optimizations. In our implementation, we use the arithmetic
mean of logarithms of probabilities to avoid floating point under-
flows while multiplying many small numbers. Moreover, since we
compute the probabilities over many tests while keeping the prompt
constant, we process the prompt once, snapshot the transformer
state, and re-use it for all tests.

Model selection. For this study, we use the StableCode-3B [11]
model, which is the newest open-source LLM for code at the time of
writing. Moreover, with less than 3 billion parameters, it is relatively
small and performs similarly to previous models in the 7 - 15 billion
parameter range.

3.3 Embedding-based Test Prioritization
Our embedding-based strategy uses two different variations to pri-
oritize tests. Both strategies first compute a vector representation of
the source code of each test but differ in how they process composite
changes that consist of several disjoint chunks:

Whole-change embedding computes the average embedding
of all chunks of the change. The test priority is the cosine
similarity to this vector: 𝑃𝑟𝑖𝑜 (𝑇 |𝐶) = 𝑒 (𝑇 ) · 𝑒 (𝐶) for the
embedding function 𝑒 , change 𝐶 and test 𝑇 (see Figure 3).

Chunked embedding computes a separate vector for each
contiguous part of the change. The test priority is the co-
sine similarity to the closest chunk vector: 𝑃𝑟𝑖𝑜 (𝑇 |𝐶) =

𝑚𝑎𝑥𝑖 (𝑒 (𝑇 ) · 𝑒 (𝑐𝑖 )) for chunks 𝑐𝑖 in change 𝐶 (see Figure 4).
We expect that if a change covers multiple locations, its average

vector is closest to the tests relevant to most locations simultane-
ously. In contrast, the rationale behind chunked embedding is that
different specific tests are relevant to different locations. Evaluation
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Figure 3: Test prioritization by embedding the whole change
in the same vector space as individual tests. Tests are ranked
by proximity (cosine similarity) in the vector space.

embedding space

change chunks

Test

Figure 4: Test prioritization by chunked embedding. Tests
are ranked by proximity to their closest chunk, clustering
around the parts of a cross-cutting change rather than a
single mean vector.

will showwhether retrieving tests relevant to the change as a whole
or specifically to one of its parts is more effective.

We format individual chunks as in the LLM prompt, i.e., include
the lexical scope. We omit the final prompt line asking to generate
a test since embedding models are not trained with regard to what
comes "after" the input.

For this study, we use the UniXCoder model [4].

4 EVALUATION
To compare test prioritization models, we perform change-based
mutation testing (see subsection 3.1) on open-source Python projects
to generate evaluation data. We will then compare the performance
of an LLM, the embedding strategies, and a baseline taken from the
information retrieval field. The latter is interesting since we expect

it to set a high bar, which should prompt a discussion of whether
much more computation-intensive procedures are required.

4.1 Data
For this study, we selected three Python projects from the top
non-educational Python projects ranked by GitHub at the time of
writing that did not have compiled dependencies, ruling out course
material and machine learning libraries. All projects are well-tested
and have a fine-grained version history:

Flask a popular web framework
Requests an HTTP client library
Jinja a templating engine
We summarized the number of commits, extracted test runs, and

their statistical properties in Table 1. The table shows the cleaned
dataset: We discarded commits over 50 LOC, commits with crashes
or incompatibilities, and mutants without test failures. The average
number of tests executed per run is higher than that of unique
tests since parametrized tests can be executed multiple times with
different inputs and pass or fail independently. The reported test
size excludes empty lines but includes comments, and the reported
runtime does not include shared setup code or fixtures, only the
isolated test time.

4.2 Metrics and Baselines
Test prioritization effectiveness is typically evaluated using average
percentage of faults detected (APFD). The APFD metric computes
the area under the curve that plots the percentage of uncovered
faults so far (y-axis) over the percentage of already executed tests
(x-axis):

𝐴𝑃𝐹𝐷 = 1 −
∑𝑛𝑓

𝑖
𝑇𝐹𝑖

𝑛𝑓 × 𝑛𝑡
+ 1
2 × 𝑛𝑡

(6)

where 𝑛𝑡 and 𝑛𝑓 denote the number of tests and faults and 𝑇𝐹𝑖
the position of the earliest test that uncovered the 𝑖-th fault.

In our experiments, we are not only interested in the perfor-
mance over all defects (we will call this the macro-APFD) but also
whether individual test runs are ranked in a way that failures ap-
pear first. Thus, we will define the micro-APFD over a single test
run by equating a fault with a test failure in the above formula, i.e.,
we compute the area under the curve that plots the percentage of
failures over the percentage of tests executed. Figure 5 illustrates
this procedure.

Baselines. We compare prioritization performance in terms of
APFD to the original (default) ordering chosen by the test runner, a
random order, and the Okapi BM25 information retrieval method
described in subsection 2.3.

4.3 Results
Our results in Table 2 show that chunked embedding outperforms
other strategies in two of the three projects but is outperformed
by the BM25 baseline in the Flask project. We hypothesize that the
larger tests (13 vs. 8 – 9 LOC) in Flask contribute to better perfor-
mance of document-oriented information retrieval while "confus-
ing" the embedding model. When comparing chunked with whole-
change embeddings, the chunked embedding is consistently the
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Project Commits
Unique
Tests

Ø Tests
per run Mutants Ø LOC changed Ø Test LOC

Median
runtime (ms) Ø Failure rate (%)

Flask 159 390 442 726 12.5 13.4 1.6 1.1
Requests 43 314 557 188 13.8 8.0 2.0 4.4

Jinja 68 655 828 420 15.2 8.6 14.0 14.8

Table 1: Statistics per project. "Ø" denotes averages. The number of mutants corresponds to the number of test runs used for
our study. The number of actual tests per run is higher than the number of unique tests because parametrized tests are run
multiple times with different inputs and can pass/fail independently.

F F
F F

F

Fault 1

Fault 2

Fault 3

APFD

APFDµ

Test Suite Progress

Fa
ul

ts
Fa

ilu
re

s

Figure 5: Visualization of micro and macro-APFD. Micro-
APFD (top) measures the area under the curve obtained by
plotting the percentage of failures over the percentage of
executed tests. Macro-APFD (bottom) plots the percentage of
overall faults detected and only considers the earliest failing
test uncovering the fault.

better choice, suggesting that embedding smaller code snippets
better captures semantic relationships.

Unexpectedly, the LLM does not perform well compared to em-
beddings, although the model was trained on vastly more data and
should be able to deal better with context. Upon manual inspection
of individual token probabilities in a sample of worst-ranked tests,
we notice that the LLM might be "surprised" by complex test logic
(such as monkey-patching) and extensive comments while assign-
ing high probabilities to tokens that repeat previous patterns or
simple statements. Long tests cause the context (change) to have
lower weight as it resorts to judging the test’s internal consistency
by assigning high probabilities to repetitive code passages encoun-
tered earlier in the test.

The curve showing how fast faults (mutants) are detected through-
out the running test suite in Figure 6 (appendix) further illustrates
the fault-detection characteristics of the individual strategies. It is

worth mentioning that all strategies cross the 50% threshold within
the first 16 or fewer tests.

The violin plots in Figure 6 show the variation across micro-
APFD. The high variability indicates that, although the strategies
find a fault relatively fast with one test, several tests fail much later.

Project APFD
Strategy Flask Requests Jinja

LLM 0.890 0.973 0.874
embedding (chunked) 0.923 0.980 0.934

embeding (whole change) 0.922 0.960 0.896
Okapi BM25 0.931 0.944 0.863

random 0.709 0.861 0.817
default (unchanged) 0.629 0.781 0.750

Table 2: Macro-APFD results per strategy and project. Larger
numbers are better.

5 DISCUSSION AND FUTUREWORK
5.1 Limitations
Although our study is limited to synthetic defects, small changes,
and only three Python projects with a relatively clean code base, it
illustrates some important learnings:

(1) Simple information retrieval models like BM25 can still be
highly competitive for code retrieval and search tasks. Espe-
cially without specialized hardware like GPUs, they might
be a better choice than models from the AI field.

(2) Embeddings benefit from small contexts and are prone to
averaging out nuances. This has consequences for the de-
sign of RTP and other retrieval or recommendation systems.
Breaking up the search corpus and the query and matching
embeddings of their parts should be considered an alterna-
tive to retrieving or ranking context-heavy data or queries.

(3) Pre-trained LLMs, when not fine-tuned, are "opinionated" in
a way that distracts them from the original context. Instead
of rewarding a relevant test, the LLM considers best practices,
internal consistency, and simplicity.

Moreover, our LLM-based probability computation takes 15 mil-
liseconds per test on a high-end consumer GPU. Since most unit
tests run faster (see Table 1), this approach does not scale favorably
and will likely not yield faster feedback on test suites like those we
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studied. However, smaller models make embeddings relatively fast
to compute on a GPU. Vectors for tests can be cached until the test
is modified, resulting in a significant speed-up.

5.2 Beyond Tests: Live Examples
RTP is a benchmark representative for several scenarios: Tech-
niques that work well for predicting test failures can be used as
recommender systems and select tests that best illustrate how the
code under change is being used. Tests and examples do not need
to originate from the same program: The recommender can pull in
relevant code from other code bases, documentation, or discussions,
alerting programmers that their change might affect how others
use their software or inform them about new usage examples.

In modern live programming environments, locating the proper
tests can quickly set up live context by running them to provide
example data. In example-based live programming, live examples
can take the role of tests and bring examples much closer to the
code - examples of such systems include Newspeak’s Exemplars [1],
Example-Centric Programming [2], and Babylonian programming [12].
If many live examples exist, an RTP-style recommender can select
those relevant to the current context.

Prioritizing run-time objects beyond those created by test code
might bring additional opportunities for program comprehension
and debugging but also new challenges: Current LLMs work on
source code and require fine-tuning on (serialized) live objects to
become functional.

5.3 Beyond Pre-trained LLMs: Fine-tuning
Our study is limited to pre-trained models. Although they have
"seen" a lot of source code, they are not adjusted to the specific
task.

A next step is to fine-tune the used models. Fine-tuning can
teach multiple aspects to an LLM or embedding model by providing
example data to show the syntax we use to denote changes and
which tests are failing and passing in our generated (or in real-
world) data sets. Also, the model can "familiarize itself" with a
project’s coding style and best practices.

Embedding models can further be trained with a contrastive
objective by moving vectors away from negative examples and
towards positive examples. Our generated data contains both failing
and passing tests and is thus an ideal candidate to fine-tune an RTP-
specific embedding.

5.4 Beyond Changes: Context Engineering and
Generation

We only tested with a simple variant of constructing the context
used by the LLMs to judge a test. Using too much context intro-
duces noise and can confuse models while using too little context
limits opportunities to link tests semantically. This problem has no
obvious answer and demands further experimentation.

Candidate objects to include in the context are:
• Surrounding lines of code
• Nearby code comments
• Dependencies and program slices (e.g., definitions of the
variables used in the change or statements affecting the
changed code)

However, with generative models, we are not limited to existing
context: The models could generate context themselves. This leads
to other approaches: (1.) Let the LLM propose candidate tests and
use their embeddings to choose among the most similar real tests.
(2.) Use an LLM to summarize a much larger context and use the
embedded summary to query the embedding space. Such proce-
dures are known as generation-augmented retrieval (GAR) [6]. This
could combine the effectiveness of embeddings we demonstrated
in our study with the capabilities of an LLM.

CONCLUSION
In this work, we studied how large language models (LLMs) and
embedding models specialized in source code can help programmers
obtain faster feedback using regression test prioritization (RTP) as
an example benchmark. We constructed a Python-based dataset by
combining real changes and test suites with synthetic defects to
overcome the lack of public data on failing test runs. Subsequently,
we evaluated how fast each approach would detect these defects
when given the chance to re-rank all tests before they run.

Based on how well state-of-the-art LLMs can generate tests, we
expected them to recognize relevant tests when presented with
an existing test suite. Surprisingly, we found that LLMs focus on
irrelevant aspects of the test, such as its coding style, thereby con-
founding their judgment. We hypothesize that fine-tuning can solve
this problem but need to point out that minor improvements might
not justify the high computational cost of an LLM.

Embedding models, in contrast, are effective and efficient at
predicting test failures, and we could demonstrate trade-offs that
tool developers using them need to consider. We also showed that
simple information-retrieval techniques are competitive and can
even outperform embedding models in some cases. Unless code
generation is needed, it appears worthwhile to carefully consider
and benchmark a simple model before integrating AI into a software
engineering tool.

Our findings have future applications in the program compre-
hension and live programming domains where they can help pro-
grammers find and run other live examples besides tests.
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Figure 6: The distribution over micro-APFDs (left) and the fault detection over test runs including macro-APFD (right).
Embedding results are only reported for the chunked embedding.
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