
Faster Feedback through
Concept-based Test Prioritization

Toni Mattis, Robert Hirschfeld

Research School for Service-Oriented Systems Engineering
Hasso Plattner Institute, University of Potsdam, Germany

HPI Nanjing Workshop 3 – 4 Sept. 2019, Nanjing, China

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam 3

{

}

Code

{ }

{ }

{ }

Tests

(Production)

1. Runs a small part of the
code with example input

2. Checks if output is as
expected

Unit Test

Testing in Software Engineering

a

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam 4

{

}

Code

{ }

{ }

{ }

Tests

(Production)

1. Runs a small part of the
code with example input

2. Checks if output is as
expected

Unit Test

Testing in Software Engineering

a

Defective Change

r

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Goal: Immediate Feedback

5

{

}

{ }

{ }

{ }

a

a

r

Code/Change Tests Test execution

time to detect fault

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Goal: Immediate Feedback

6

{

}

{ }

{ }

{ }

a

a

r

Code/Change Tests Test execution

time to detect fault

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Lexical Test Prioritization

7

{

}

if session.user.is_admin:
return …

assert get(…).status == 403
with login(admin_user):

assert get(…) == …

return … -

+
+

{ }

{ }

{ }

a

r

Lexical similar ity

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Test cases that share vocabulary with the
most recent change are more likely to fail

8

Hypothesis

Approach

1. Seed faulty changes

2. Run tests

3. Re-order tests based on lexical similarity

4. Check how much earlier failures occur

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Fault Seeding

9

{

}

{

}

Version N Version N + 1

-

+
+

Diff

Mutant N + 1

{

}

-

+
+

Faulty Diff

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Fault Seeding

10

{

}

Version N + 1

Mutant N + 1

{

}

a

a

Control Run

a

a

a

r

Sampling Run

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Fault Seeding

11

if not session.user.is_admin:
…

if session.user.is_admin:
…

Negate condition

average = total / count average = total * count

Swap operator

response.status = 404 response.status = 405

Change number

user_profile.save()
return redirect(…) return redirect(…)

Drop call

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Feature Extraction

12

Mutant

{

}

a

a

r

Sampling Run

if not session.user.is_admin:
return …

assert get(…).status == 403
with login(admin_user):

assert get(…) == …

{ admin, user, session … } { admin, user, status, login, … }

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Prioritization

13

Mutant

{

}

a

a

r

Sampling Run

{ login, user, password, … }

{ render, template, … }

{ admin, user, … }

{ admin, user, … }

TF-IDF:

#Tests with word w

ID
F

 w
e

ig
h

t

blueprint

this

html

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Prioritization

14

Mutant

{

}

a

a

r

Sorted sampling run results

{ login, user, password, … }

{ render, template, … }

{ admin, user, … }

{ admin, user, … }

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Case Study: Flask

Python web framework, 74 diffs, 413 seeded faults

18

79%

8%

93%

88%

S
e

e
d

e
d

 f
au

lt
s

d
e

te
ct

e
d

Execution time [seconds]

untreated

ranked

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Case Study: Flask

Python web framework, 74 commits, 413 seeded faults

19

S
am

p
lin

g
 R

u
n

Test Executions (untreated) Test Executions (ranked)

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Case Study: Flask

Limitation: Pull Requests

» Largest type of “change”

20

276 features

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Case Study: Flask

Limitations:

» Pull Requests

» Distinguishing names (“NoAppException”) split into
generic words (“no”, “app”, “exception”)

21

‘no’, 'app’, 'exception’,

of 276…

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Exploiting Topicality

Changed identifiers:

user, password, check

25

Test to prioritize:

login, email, password

Topic/Concept Model

ch
e
ck

u
se

r

p
as

sw
o

rd

lo
g
in

e
m

ai
l

p
o

in
t

re
ct x y

ch
e
ck

u
se

r

p
as

sw
o

rd

lo
g
in

e
m

ai
l

p
o

in
t

re
ct x y

p
o

in
t

Topic 1 Topic 2

…

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Exploiting Topicality

Changed identifiers:

user, password, check

26

Test to prioritize:

login, email, password

ch
e
ck

u
se

r

p
as

sw
o

rd

lo
g
in

e
m

ai
l

p
o

in
t

re
ct x y

ch
e
ck

u
se

r

p
as

sw
o

rd

lo
g
in

e
m

ai
l

p
o

in
t

re
ct x y

p
o

in
t

Topic 1 Topic 2

…

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Approximating the Call Graph

27

Method 1

Method 2

Method 3

Test
Topic 1

Topic 1

Topic 2

Topic 2

Topic 1

Change

Test transitively
relates to Topic 2

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Approximating the Call Graph

28

Method 1

Method 2

Method 3

Test
Topic 1

Topic 1

Topic 2

Topic 2

Topic 1

Topic 1 Topic 2

0.6

0.1 0.9

0.4

Markov Chain

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Live Testing Tools

AutoTDD runs a selected set of tests whenever another
selected set of code locations is changed

29

Mattis, Hirschfeld | NJU HPI Workshop, Nanjing, 2019 | Software Architecture Group, HPI Potsdam

Conclusion

» Change-based fault seeding is an
effective method to generate many
failures distributed like actual
changes

» Lexical information can be
exploited to quickly guess which
tests may fail

» There is more potential in exploring
topicality and Markov properties of
the vocabulary

31

