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Goal: Immediate Feedback
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Goal: Immediate Feedback
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Lexical Test Prioritization
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Test cases that share vocabulary with the 
most recent change are more likely to fail 
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Hypothesis

Approach

1. Seed faulty changes

2. Run tests

3. Re-order tests based on lexical similarity

4. Check how much earlier failures occur
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Fault Seeding
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Fault Seeding
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Fault Seeding
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if not session.user.is_admin:
…

if session.user.is_admin:
…

Negate condition

average = total / count average = total * count

Swap operator

response.status = 404 response.status = 405

Change number

user_profile.save()
return redirect(…) return redirect(…)

Drop call
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Feature Extraction
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Sampling Run

if not session.user.is_admin:
return …

assert get(…).status == 403
with login(admin_user):

assert get(…) == …

{ admin, user, session … } { admin, user, status, login, … } 
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Prioritization
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Prioritization
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Case Study: Flask

Python web framework, 74 diffs, 413 seeded faults
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Case Study: Flask

Python web framework, 74 commits, 413 seeded faults
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Case Study: Flask

Limitation: Pull Requests

» Largest type of “change”
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276 features
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Case Study: Flask

Limitations:

» Pull Requests

» Distinguishing names (“NoAppException”) split into 
generic words (“no”, “app”, “exception”)
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‘no’, 'app’, 'exception’,

of 276…
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Exploiting Topicality

Changed identifiers:

user, password, check
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Exploiting Topicality

Changed identifiers:

user, password, check
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Test to prioritize:
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Approximating the Call Graph
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Approximating the Call Graph
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Live Testing Tools

AutoTDD runs a selected set of tests whenever another 
selected set of code locations is changed
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Conclusion

» Change-based fault seeding is an 
effective method to generate many 
failures distributed like actual 
changes

» Lexical information can be 
exploited to quickly guess which 
tests may fail

» There is more potential in exploring 
topicality and Markov properties of 
the vocabulary
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