
Towards
Concept-aware Programming Environments

for Guiding Software Modularity

Toni Mattis, Patrick Rein, Stefan Ramson,
Jens Lincke, Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute, University of Potsdam, Germany

PX/17.2 22 Oct. 2017, Vancouver

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam 2

tree

root

leaf

extrapolation
(from code)

projection
(into code)

root

leaf

tree

metaphor
mental shortcut

metaphor
deriving names

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Problem Statement

With growing code bases…

» Concepts tend to scatter and entangle

» Programmers need more time to recognize concepts

3

modules

separation of concerns

scattering / tangling

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Problem Statement

With growing code bases…

» Concepts tend to scatter and entangle

» Programmers need more time to recognize concepts

Consequences of incomplete recognition

» Architectural Drift: Code written in the wrong place

» Duplication: Missed existing functionality

» Inconsistent Naming: Metaphor misunderstood

Approaches

» Proactive: Tools/Language features to maintain concepts
[e.g. AOP/COP/ … discipline during development!]

» Retroactive: Tools to recover concepts

» Proactive: Tools to support concept maintenance

4

reinforce

mitigate

Mission

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Basic Concept Model

10

Morph » bounds: newBounds

self position: newBounds topLeft;

extent: newBounds extent.

draw, canvas, fill, …

bounds, position,
extent, …

Canvas » draw: anObject

^ anObject drawOn: self

concept labels
which concept a name belongs to

concepts
prevalent names

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Names

» Typical identifiers can consist of multiple names
› Camel Case:

fillRectangle → fill, rectangle

› Underscore:
fill_rectangle → fill, rectangle

› Acronyms:
HTTPServer → http, server

› Multi-part message names:
fillRectangle:color: → fill, rectangle, color

» Constant strings (or symbols) can be relevant, too:
› config['backgroundColor']

› config at: #backgroundColor

→ background, color

11

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

AST-based View

12

AST
Abstract Syntax Tree

Expanded
Identifiers

"camelCase"

"camel" "case"

Concept AST

aggegated concept
distribution

Name
Extraction

concept labels

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Maintaining Concepts

1. Automated bootstrap phase ("concept mining")

› Deciding which names belong to the same / a different
concept

› Setting the granularity

› Selecting useful data/features

2. User refinements

› Types of operations provided to users

› (Partially) re-running concept mining

› Synchronizing refinements between team members

13

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Maintaining Concepts

1. Automated bootstrap phase ("concept mining")

› Deciding which names belong to the same / a different
concept

› Setting the initial granularity

› Selecting useful data/features

2. User refinements

› Types of operations provided to users

› (Partially) re-running concept mining

› Synchronizing refinements between team members

14

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Distributional Hypothesis

» Lexical tokens with a similar distribution have a
similar meaning

15

Methods

Term A

Term B

Term A

Term C

𝑓 𝐴 ∧ 𝐵 = 3/16

𝑓 𝐴 ∧ 𝐶 = 7/16

𝐸 𝑓 𝐴 ∧ 𝐵 = 4/16 (if both were random)

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

» Names belonging to the same concept co-occur more
frequently in the same scope

መ𝑓 𝑎, 𝑏 =
𝑓 𝑎 ∧ 𝑏

𝑓 𝑎 𝑓 𝑏
= ⋯

Concept Mining: Co-occurrence

16

methods containing a

methods containing a and b

methods containing bproportion of…

≈ 0.0 (mutually
exclusive)

≈ 1.0 (random) ≫ 1.0 (intentional?)

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Co-occurrence

Examples (Squeak/Smalltalk Image)

a b መ𝑓 𝑎, 𝑏

visit accept 70.1 same design pattern

bounds draw 15.4 geometry & drawing

collect select 6.8 same API

parse next 2.2 parsing & streams

collect color 1.5 incidental

visitor color 0.0 mutually exclusive

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Co-occurrence Relations

» Same module
› class, method, package

› file

› lexical scope

» Within certain distance
› … in the AST

› … in text

› … in execution

» Edited close in time
› Git commits

› IDE interactions

18

Class

Method

Method

a

b

a

b

Class

MethodMethod

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Concept Mining

» Clustering

› Maximize intra-cluster similarity

› Minimize inter-cluster similarity

› One concept per name

» Mixture Models
› Every name has a probability of occurring in each concept

› Bag-of-words (Topic Models)

› Graph-based (Stochastic Block Models)

19

co-occurrence,
pointwise mutual information,
cosine similarity, …

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Topic Models

20

v
e

rt
e

x
e

d
g

e
p

at
h

ro
u

te
d

e
st

in
at

io
n

st
ar

t

p
o

ly
g

o
n

co
lo

r
ca

n
v

a
s

v
e

rt
e

x
e

d
g

e
g

ra
p

h

ro
u

te
d

e
st

in
at

io
n

st
ar

t

ci
rc

le
lin

e
co

lo
r

topics
terms sharing a

common
distribution

60% 40%+

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Training
Name
Extraction Mixture Model

AST-based View

21

AST
Abstract Syntax Tree

Expanded
Identifiers

"camelCase"

"camel" "case"

Concept AST

aggegated concept
distribution

concept labels
(most likely topic)

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Composition & Abstraction Barriers

22

Morph » bounds: newBounds

self position: newBounds topLeft;

extent: newBounds extent.

draw, canvas, fill, …

bounds, position,
extent, …

Canvas » draw: anObject

^ anObject drawOn: self

uses
(implemented through)

mixing

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Composition & Abstraction Barriers

23

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

implementation (defining concepts)

concepts

use in their

implementation

abstraction (concepts being defined)

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Composition & Abstraction Barriers

24

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

abstraction (concepts being defined)

implementation (defining concepts)

draw, canvas, fill, …

bounds, position,
extent, …

1

3

2

3

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Concept Graph

25

draw, canvas, fill, …

bounds, position,
extent, …

city, road, speed graph, vertex, node

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Maintaining Concepts

1. Automated bootstrap phase ("concept mining")

› Deciding which names belong to the same / a different
concept

› Setting the initial granularity

› Selecting useful data/features

2. User refinements

› Types of operations provided to users

› (Partially) re-running concept mining

› Synchronizing refinements between team members

26

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Operations on Concepts

Reassign concept label:

Challenges

» Inconsistencies
› Re-computing clustering might avalanche into many other

concepts being re-assigned to restore optimality

› Not doing so might leave programmers with lots of manual
re-assignment work

» Synchronization
› Share manual refinements across a team of programmers

27

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Operations on Concepts

Merge concepts

Split concepts

› Optimal Split

› Hierarchical Topic Model

› Manual / Semi-supervised

28

draw, canvas, fill, …

bounds, position,
extent, …

bounds, canvas
position, fill, …

bounds, position,
extent, …

position, x, y, …

bounds, extent,
origin, …

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Exploring the Concept Graph

32

+

+
draw, canvas, fill, …

city, road, speed

graph, vertex, node

+

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Exploring the Concept Graph

33

+

+

draw, canvas, fill, …

city, road, speed

graph, vertex, node

+

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Exploring the Concept Graph

34

+

+

city, road, speed

graph, vertex, node

bounds, position,
extent, …

draw, canvas, fill, …

-

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

6 rEditor

Concept-aware Tooling

» Highlight concepts in Code

38

Morph » bounds: newBounds

self position: newBounds topLeft;

extent: newBounds extent.

Canvas » draw: anObject

^ anObject drawOn: self

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Concept-aware Tooling

» Improve relevance of information displayed during
› code completion

› debugging

» In live programming
› Arranging and prioritizing live objects and meta-objects

› Live feedback on modularity, name choices, recommended
code artifacts, …

39

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

A Perspective on Modularity

40

module entropy: concept entropy:

𝐻 𝑚 = −෍

𝑐

𝑝 𝑐 𝑚 log2 𝑝 𝑐 𝑚 𝐻 𝑐 = −෍

𝑚

𝑝 𝑚 𝑐 log2 𝑝 𝑚 𝑐

module

…high values indicate need for refactoring or cross-cutting concerns

tangling scattering

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining Concepts from Code
with Probabilistic Topic Models,” ASE, 2007

module module module

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Counteracting Architectural Drift

Architectural Drift:

Conceptual model misaligned with module structure

» Quantifiable using entropy over time

» Motivates integration into version control

» Hypothesis: Awareness can help programmers to fix
modularity issues before incurring technical debt

41

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam 42

tree

root

leaf

extrapolation
(from code)

projection
(into code)

root

leaf

tree

metaphor
mental shortcut

metaphor
deriving names

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam 43

projection
(into code)

root

leaf

tree

metaphor
mental shortcut

metaphor
deriving names

6r

maintenance
(understanding code &
keeping it modular)

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Open Questions

» Which additional information needs can be assessed
using our concept model?

» How do our tools need to look like to keep
programmers aware of modularity issues without
distracting them?

» How can we balance the trade-off between
automated (potentially surprising) and manual
concept assignment?

» How can the proposed concept model be
maintained collectively?

44

Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Conclusion

45

1 First-class concepts are
complementary to language
features to manage concepts

2 Existing tools can be extended to
include concept information, new tools
can navigate and manipulate concepts

3 Concepts are not restricted to reverse
engineering, but support modularity
during forward engineering

