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Problem Statement

With growing code bases…

» Concepts tend to scatter and entangle

» Programmers need more time to recognize concepts
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Problem Statement

With growing code bases…

» Concepts tend to scatter and entangle

» Programmers need more time to recognize concepts

Consequences of incomplete recognition

» Architectural Drift: Code written in the wrong place

» Duplication: Missed existing functionality

» Inconsistent Naming: Metaphor misunderstood

Approaches

» Proactive: Tools/Language features to maintain concepts
[ e.g. AOP/COP/ … discipline during development! ]

» Retroactive: Tools to recover concepts

» Proactive: Tools to support concept maintenance
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Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Basic Concept Model
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Morph » bounds: newBounds

self position: newBounds topLeft;

extent: newBounds extent.

draw, canvas, fill, …
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Canvas » draw: anObject

^ anObject drawOn: self
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Names

» Typical identifiers can consist of multiple names
› Camel Case: 

fillRectangle → fill, rectangle

› Underscore:
fill_rectangle → fill, rectangle

› Acronyms:
HTTPServer → http, server

› Multi-part message names:
fillRectangle:color: → fill, rectangle, color

» Constant strings (or symbols) can be relevant, too:
› config['backgroundColor']

› config at: #backgroundColor

→ background, color

11



Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

AST-based View
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Maintaining Concepts

1. Automated bootstrap phase ("concept mining")

› Deciding which names belong to the same / a different
concept

› Setting the granularity

› Selecting useful data/features

2. User refinements

› Types of operations provided to users

› (Partially) re-running concept mining

› Synchronizing refinements between team members

13
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Maintaining Concepts

1. Automated bootstrap phase ("concept mining")

› Deciding which names belong to the same / a different
concept

› Setting the initial granularity

› Selecting useful data/features

2. User refinements

› Types of operations provided to users

› (Partially) re-running concept mining

› Synchronizing refinements between team members
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Distributional Hypothesis

» Lexical tokens with a similar distribution have a 
similar meaning
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Methods

Term A

Term B

Term A

Term C

𝑓 𝐴 ∧ 𝐵 = 3/16

𝑓 𝐴 ∧ 𝐶 = 7/16

𝐸 𝑓 𝐴 ∧ 𝐵 = 4/16 (if both were random)
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» Names belonging to the same concept co-occur more 
frequently in the same scope

መ𝑓 𝑎, 𝑏 =
𝑓 𝑎 ∧ 𝑏

𝑓 𝑎 𝑓 𝑏
= ⋯

Concept Mining: Co-occurrence
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methods containing a

methods containing a and b

methods containing bproportion of…

≈ 0.0 (mutually 
exclusive)

≈ 1.0 (random) ≫ 1.0 (intentional?)



Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Co-occurrence

Examples (Squeak/Smalltalk Image)

a b መ𝑓 𝑎, 𝑏

visit accept 70.1 same design pattern

bounds draw 15.4 geometry & drawing

collect select 6.8 same API

parse next 2.2 parsing & streams

collect color 1.5 incidental

visitor color 0.0 mutually exclusive
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Co-occurrence Relations

» Same module
› class, method, package

› file

› lexical scope

» Within certain distance
› … in the AST

› … in text

› … in execution

» Edited close in time
› Git commits

› IDE interactions
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Concept Mining

» Clustering

› Maximize intra-cluster similarity

› Minimize inter-cluster similarity

› One concept per name

» Mixture Models
› Every name has a probability of occurring in each concept

› Bag-of-words (Topic Models)

› Graph-based (Stochastic Block Models)
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co-occurrence,
pointwise mutual information,
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Topic Models
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Training
Name
Extraction Mixture Model

AST-based View
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Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Composition & Abstraction Barriers
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Morph » bounds: newBounds

self position: newBounds topLeft;

extent: newBounds extent.

draw, canvas, fill, …

bounds, position, 
extent, …

Canvas » draw: anObject

^ anObject drawOn: self

uses
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Composition & Abstraction Barriers
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Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

implementation (defining concepts)

concepts

use in their 

implementation

abstraction (concepts being defined)



Mattis, Rein, Ramson, Lincke, Hirschfeld | PX/17.2, Vancouver, 2017 | Software Architecture Group, HPI Potsdam

Composition & Abstraction Barriers
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Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

abstraction (concepts being defined)

implementation (defining concepts)

draw, canvas, fill, …

bounds, position, 
extent, …
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Concept Graph
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Maintaining Concepts

1. Automated bootstrap phase ("concept mining")

› Deciding which names belong to the same / a different
concept

› Setting the initial granularity

› Selecting useful data/features

2. User refinements

› Types of operations provided to users

› (Partially) re-running concept mining

› Synchronizing refinements between team members
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Operations on Concepts

Reassign concept label:

Challenges

» Inconsistencies
› Re-computing clustering might avalanche into many other 

concepts being re-assigned to restore optimality

› Not doing so might leave programmers with lots of manual 
re-assignment work

» Synchronization
› Share manual refinements across a team of programmers
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Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.
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Operations on Concepts

Merge concepts

Split concepts

› Optimal Split

› Hierarchical Topic Model

› Manual / Semi-supervised
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Exploring the Concept Graph
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Exploring the Concept Graph
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Exploring the Concept Graph
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6 rEditor

Concept-aware Tooling

» Highlight concepts in Code
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Morph » bounds: newBounds

self position: newBounds topLeft;

extent: newBounds extent.

Canvas » draw: anObject

^ anObject drawOn: self

Morph » drawOn: aCanvas

aCanvas fillRectangle: self bounds.
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Concept-aware Tooling

» Improve relevance of information displayed during
› code completion

› debugging

» In live programming
› Arranging and prioritizing live objects and meta-objects

› Live feedback on modularity, name choices, recommended 
code artifacts, …
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A Perspective on Modularity
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module entropy: concept entropy:

𝐻 𝑚 = −෍

𝑐

𝑝 𝑐 𝑚 log2 𝑝 𝑐 𝑚 𝐻 𝑐 = −෍

𝑚

𝑝 𝑚 𝑐 log2 𝑝 𝑚 𝑐

module

…high values indicate need for refactoring or cross-cutting concerns

tangling scattering

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining Concepts from Code 
with Probabilistic Topic Models,” ASE, 2007

module module module
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Counteracting Architectural Drift

Architectural Drift:

Conceptual model misaligned with module structure

» Quantifiable using entropy over time

» Motivates integration into version control

» Hypothesis: Awareness can help programmers to fix 
modularity issues before incurring technical debt

41
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Open Questions

» Which additional information needs can be assessed 
using our concept model?

» How do our tools need to look like to keep 
programmers aware of modularity issues without 
distracting them?

» How can we balance the trade-off between 
automated (potentially surprising) and manual
concept assignment?

» How can the proposed concept model be
maintained collectively?

44
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Conclusion
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1 First-class concepts are
complementary to language
features to manage concepts

2 Existing tools can be extended to
include concept information, new tools
can navigate and manipulate concepts

3 Concepts are not restricted to reverse
engineering, but support modularity
during forward engineering


